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Hydrodynamic fluctuations in the Kolmogorov flow: Linear regime
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The Landau-Lifshitz fluctuating hydrodynamics is used to study the statistical properties of the linearized
Kolmogorov flow. The relative simplicity of this flow allows a detailed analysis of the fluctuation spectrum
from near equilibrium regime up to the vicinity of the first convective instability threshold. It is shown that in
the long time limit the flow behaves as an incompressible fluid, regardless of the value of the Reynolds
number. This is not the case for the short time behavior where the incompressibility assumption leads in
general to a wrong form of the static correlation functions, except near the instability threshold. The theoretical
predictions are confirmed by numerical simulations of the full nonlinear fluctuating hydrodynamic equations.
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I. INTRODUCTION

A common theoretical approach for the study of fluctu
tions is the Landau-Lifshitz fluctuating hydrodynamics@1#
mainly because of its relative simplicity as compared to m
fundamental approaches@2,3#. Fluctuating hydrodynamics is
a stochastic formulation of standard fluid mechanics. Sp
taneous fluctuations of hydrodynamic variables are in
duced into the transport equations by adding random com
nents to the dissipative part of the pressure and heat flu
Since these fluxes are not conserved quantities, the cor
tions of the random terms are expected to be short ran
and short lived, so that on a hydrodynamic scale they
assumed to be Dirac-d correlated. Their strengths are the
chosen to yield the correct equilibrium thermodynamic flu
tuations as derived from the Gibbs distribution.

Fluctuating hydrodynamics has been used by various
thors to study the statistical properties of simple fluids s
jected to nonequilibrium constraints, such as tempera
gradient@2,4,5# or shear@3,6# ~for a review, see Ref.@7#!.
Recent light scattering results, obtained for systems un
temperature gradient, have shown quantitative agreem
with theoretical predictions@8#. Quantitative agreement
have also been demonstrated with results based on pa
simulations, both for systems under temperature grad
@9,10# and shear@11#. A more important issue is obviousl
the role of fluctuations in the onset of hydrodynamical ins
bilities, such as the convective instability arising in the B´-
nard problem@12#.

The macroscopic studies of subsonic hydrodynamical
stabilities are usually based on the incompressibility assu
tion. However, as pointed out by Zaitsev and Shliomis@13#,
this assumption is basically inconsistent with the very fou
dation of the fluctuating hydrodynamics formalism since
imposes fictitious correlations between the velocity com
nents of the fluids. On the other hand, even in the absenc
noise, the mathematical analysis of convective instabili
arising in compressible fluids proves to be quite involv
@14,15#. One way to overcome this difficulty is to look fo
idealized models which, in spite of their extreme simplici
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can nevertheless lead to hydrodynamical instabilities an
gous to those observed in real systems. Our main purpos
this article is to study the statistical properties of one su
model proposed some 50 years ago by Kolmogorov@16#. As
we will show, the periodic boundary conditions associated
this model allow detailed analysis of the fluctuation spectr
from near equilibrium up to the vicinity of the first instabilit
leading to convective rolls.

The Kolmogorov flow will be presented in the next se
tion where some well known aspects of its macroscopic
havior are reviewed. The statistical properties of the mo
will be discussed in Sec. III. We will show that the dynam
structure factor of the fluid is practically not affected by no
equilibrium constraints. This is not the case for the veloc
correlation functions which become long ranged as soon
the system is driven out of equilibrium. Their amplitude
shown to diverge as one approaches the convective inst
ity threshold. Conclusions and perspectives will be presen
in Sec. IV.

II. KOLMOGOROV FLOW

Consider an isothermal flow in a rectangular boxLx3Ly
oriented along the main axes, that is,$0<x,Lx,0<y
,Ly%. Periodic boundary conditions are assumed in b
directions and the flow is maintained through an exter
force field of the form

Fext5F0 sin~2pny/Ly!1x , ~1!

where 1x is the unit vector in thex direction. This model
represents the so-called ‘‘Kolmogorov flow’’ and it belong
to the wider class of two-dimensional negative effecti
eddy viscosity flows@17#. It is entirely characterized throug
the strength of the force fieldF0 , the parametern, which
controls the wave number of the forcing, and the aspect r
ar , defined as

ar5Lx /Ly . ~2!
5503 ©1999 The American Physical Society
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In the following, we will mainly concentrate on the casen
51.

The hydrodynamic equations for this model read

]r

]t
52“•~rv!, ~3!

r
]v

]t
52r~v•“ !v2“P2“•s1Fext, ~4!

wherer is the mass density,P the hydrostatic pressure, an
s the two-dimensionalstress tensor:

s i , j52hS ]v i

]xj
1

]v j

]xi
2d i , j“•vD2zd i , j“•v. ~5!

For simplicity, we shall assume that the shear and bulk
cosity coefficients,h andz, arestate independent, i.e., they
are constant. It can then be easily checked that at the sta
ary state the pressure and the density are uniform in sp
(Pst5P0 ,rst5r0) whereas the velocity profile is given by

vst5u0 sin~2py/Ly!1x , ~6a!

u05
F0Ly

2

4p2h
. ~6b!

For small enoughF0 , this stationary flow is stable. As w
increaseF0 , however, the flow may become unstable, givi
rise to rotating convective patterns. Other instabilities of
creasing complexity may occur for larger values ofF0 , cul-
minating in a turbulentlike behavior@18–20#. In this paper
we shall limit ourselves to the analysis of the system bef
its first instability.

We still have to supply the momentum conservation eq
tion, Eq.~4!, with an equation of state relating the pressure
the density~recall that the system is isothermal!. In this sec-
tion, we follow the traditional macroscopic analysis by a
suming that the flow is incompressible, i.e.,

“•v5
]u

]x
1

]v
]y

50, ~7!

whereu andv represent thex andy components of the ve
locity, respectively, i.e.,v[u1x1v1y . Relation~7! implies a
uniform densityr0 throughout the system for all times,
initially so, as well as the existence of a scalar functi
c(x,y), known as ‘‘stream function,’’ defined by the rela
tions

u5
]c

]y
, v52

]c

]x
. ~8!

Scaling lengths byLy , velocities byu0 , and time byLy /u0 ,
the dimensionless equation for the stream function reads

]~¹2c!

]t
52

]c

]y

]~¹2c!

]x
1

]c

]x

]~¹2c!

]y
1R21¹2~¹2c!

18p3R21 cos~2py!, ~9!

whereR represents the Reynolds number,
-

n-
ce

-

e

-
o

-

R5
u0Ly

n
, ~10!

andn[h/r is the kinematic viscosity. The stationary sol
tion of Eq. ~9! reads

cst52
1

2p
cos~2py!. ~11!

Settingc5cst1dc, and linearizing Eq.~9! aroundcst, one
gets

]~¹2dc!

]t
52sin~2py!

]~¹2dc!

]x
24p2 sin~2py!

]dc

]x

1R21¹2~¹2dc!. ~12!

Owing to periodic boundary conditions,dc(x,y,t) can be
expanded in Fourier series:

dc~x,y,t !5 (
kx ,ky52`

`

exp~22p ikyy!

3exp~22p ikxx/ar !dckx ,ky
~ t !,

~13!

dckx ,ky
~ t !5E

0

1

dy exp~2p ikyy!

3
1

ar
E

0

ar
dx exp~2p ikxx/ar !dc~x,y,t !.

Equation~12! can then be transformed to

]dckx ,ky

]t
524p2R21~ k̃x

21ky
2!dckx ,ky

1p k̃x@dckx ,ky112dckx ,ky21#

12p
k̃xky

k̃x
21ky

2
@dckx ,ky111dckx ,ky21#, ~14!

where we have set

k̃x5kx /ar . ~15!

In its general form, the analysis of this equation proves
be quite difficult@21#. On the other hand, ifcst is stable then,
in the long time limit, the evolution of the system will b
mainly governed by long wavelength modes. According
we start our analysis by considering only the modesky50,
61, i.e., we assume thatdckx,ky

(t)'0 for ukyu>2 @22#.

Equation ~14! then reduces to a 333 matricial equation
whose eigenvalues forkxÞ0 ~the casekx50 is trivial! are
found to be

l1522p2R21~112k̃x
2!

1pA2k̃x
2~12 k̃x

2!/~11 k̃x
2!14p2R22,
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l2522p2R21~112k̃x
2!

2pA2k̃x
2~12 k̃x

2!/~11 k̃x
2!14p2R22, ~16!

l3524p2R21~11 k̃x
2!.

It follows from Eq. ~16! that l2 andl3 are always nega
tive, whereas there exists a critical value of the Reyno
number

Rc~kx!52&p
11 k̃x

2

A12 k̃x
2

, 0, k̃x
2<1 ~17!

for which l1 becomes equal to zero, thus indicating the lim
of the stability of the corresponding mode@23#. ClearlyRc is
an increasing function ofukxu so that the first modes to be
come unstable correspond toukxu51, provided the aspec
ratio ar.1. As ar→1, Rc→`, indicating that no instability
can develop for perturbations of the same spatial periodi
as the applied force~see Ref.@24#!. In the following, we shall
therefore concentrate on the casear.1.

For ar52, relation~17! predicts a critical Reynolds num
ber Rc55pA6/3'12.8255. Analytical calculations can sti
be handled when the modesky562,63 are taken into ac-
count as well, and lead to a critical Reynolds numberRc
'12.8736. The discrepancy thus remains smaller than 0.
Numerical evaluation ofRc performed with a total amount o
103 modes shows no further discrepancy. We thus conc
that one can rely reasonably well on a ‘‘three-modes’’ a
proximation theory@that is, dckx,ky

(t)'0 for ukyu>2#, as

long asR is close toRc . We shall use this approximation i
the next section to study the statistical properties of the s
tem near its first instability.

III. HYDRODYNAMIC FLUCTUATIONS

To study the fluctuation spectrum, we first linearize t
hydrodynamic equations~3! and ~4! around the stationary
state. Settingr5r01dr, P5P01dP, andv5vst1dv, and
following Landau and Lifshitz@1#, the fluctuating hydrody-
namic equations read

]dr

]t
52r0S ]du

]x
1

]dv
]y D2u0 sinS 2py

Ly
D ]dr

]x
, ~18!

r0

]dv

]t
52r0~vst•“ !dv2r0~dv•“ !vst2“dP2“•ds.

~19!

ds is the two-dimensional fluctuating stress tensor:

ds i , j52hS ]dv i

]xj
1

]dv j

]xi
2d i , j“•dvD2zd i , j“•dv1Si , j ,

~20!

whereS is a random tensor whose elements$Si , j% are Gauss-
ian white noises with zero mean and covariances given
s

t

ty

.

de
-

s-

^Si , j~r ,t !Sk,l~r 8,t8!&52kBT0d~ t2t8!d~r2r 8!

3@h~d i ,k
Krd j ,l

Kr1d i ,l
Krd j ,k

Kr !

1~z2h!d i , j
Krdk,l

Kr #. ~21!

We still have to specify the equation of state. Since
fluid is isothermal, we simply set

dP5cs
2dr, ~22!

wherecs is the isothermal sound speed. Scaling lengths
Ly , time byLy /cs , dr by r0 , anddv by the speed of sound
the dimensionless fluctuating equations in the Fourier sp
read

]drkx ,ky
~ t !

]t
52p i ~ k̃xdukx ,ky

1kydvkx ,ky
!

1eRp k̃x~drkx ,ky112drkx ,ky21!, ~23!

]dukx ,ky
~ t !

]t
52peR~dvkx ,ky111dvkx ,ky21!

1peRk̃x~dukx ,ky112dukx ,ky21!

24p2e~ k̃x
21ky

2!dukx ,ky

24p2ae k̃x~ k̃xdukx ,ky
1kydvkx ,ky

!

12p i k̃xdrkx ,ky
1Fkx ,ky

~ t !, ~24!

]dvkx ,ky
~ t !

]t
5peRk̃x~dvkx ,ky112dvkx ,ky21!

24p2e~ k̃x
21ky

2!dvkx ,ky

24p2aeky~ k̃xdukx ,ky
1kydvkx ,ky

!

12p ikydrkx ,ky
1Gkx ,ky

~ t !, ~25!

wherea5z/h and

e5
n

csLy
. ~26!

The functionsFkx ,ky
and Gkx ,ky

are Fourier components o
the noise terms; their covariances follow directly from Eq
~20! and ~21!:

^Fkx ,ky
~ t !Fk

x8 ,k
y8
~ t8!&5eA@~a11!k̃x

21ky
2#dk1k8,0

Kr d~ t2t8!,

^Fkx ,ky
~ t !Gk

x8 ,k
y8
~ t8!&5eAa k̃xkydk1k8,0

Kr d~ t2t8!, ~27!

^Gkx ,ky
~ t !Gk

x8 ,k
y8
~ t8!&5eA@ k̃x

21~a11!ky
2#dk1k8,0

Kr d~ t2t8!,

wherek[(kx /ar ,ky) and

A58p2
kBT0

Mcs
2 , ~28!
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M5arr0Ly
2 being the total mass of the system.

The analysis of the above Langevin equations can be s
plified somewhat by noticing that the quantitye must remain
small if one wishes to remain within the limit of validity o
the hydrodynamic regime@25#. Furthermore, as already men
tioned in the Introduction, in this article we limit ourselves
strictly subsonic flows, so thateR5u0 /cs!1. We thus have
at our disposal a natural small parameter which, howe
has to be used with care since the solution of the Lange
equations~23!–~25! proves to be singular in the limite
→0. Moreover, it turns out that the behavior of the system
qualitatively independent of the value of the bulk viscos
coefficient so that, to avoid cumbersome notations, we s
ply seta50 ~recall thata5z/h). In any case, the calcula
tions remain lengthy and tedious, so that here we concen
mainly on the final results, giving only a brief sketch of th
intermediate steps.

We pay particular attention to two quantities: First, t
so-called scattering function, defined as the space-time F
rier transform of the density autocorrelation function:

Sk~v!5E
2`

1`

dt exp~ ivt !^drk~ t !dr2k~0!&, ~29!

^drk~ t !dr2k~0!&5
1

S2 E E drdr 8 exp$2p ik•~r2r 8!%

3^dr~r ,t !dr~r 8,0!&, ~30!

where the integrals extend over the surfaceS5ar31 of the
system; and second, the space-time Fourier transform o
velocity autocorrelation function, defined in a similar fas
ion:

Wk~v!5E
2`

1`

dt exp~ ivt !^dvk~ t !•dv2k~0!& ~31!

as well as its static~equal time! counterpart:

^dvk•dv2k&5
1

2p E
2`

1`

dvWk~v!. ~32!

We found that, to dominant order ine, Sk(v) is not af-
fected by the nonequilibrium constraints, i.e.,

Sk~v!5
32eAk4p4

~v224k2p2!2116e2v2k4p4 @11O~e2R2!#,

~33!

where k2[( k̃x
21ky

2). We note that the scattering functio
exhibits only sound mode peaks~Brillouin lines!. The ab-
sence of a purely dissipative mode aroundv'0 ~Rayleigh
line! is directly related to the fact that the Kolmogorov flo
is ‘‘strictly’’ isothermal, i.e., there are no temperature~or
entropy! fluctuations. On the other hand, the velocity au
correlation function does exhibit a purely dissipative visco
regime aroundv'0, together with a sound regime locate
aroundv'62puku. Here again we found that, to domina
order ine, the sound regime is not affected by the noneq
librium constraints and behaves very much like the scatte
function, Eq.~33!. One thus arrives at the conclusion that t
-

r,
in

s

-

te

u-

he
-

-
s

i-
g

nonequilibrium constraints affect mainly the behavior of t
fluid near the originv'0 ~the viscous regime!.

We first consider near equilibrium situations, limiting ou
selves to relatively small values of the Reynolds numberR.
In this case the Langevin equations~23!–~25! can be solved
perturbatively by expanding the hydrodynamic variab
around the equilibrium,

dr5dreq1mdr11m2dr21¯ , ~34a!

dv5dveq1mdv11m2dv21¯ , ~34b!

where the subscript ‘‘eq’’ denotes equilibrium quantities a
the parameterm is defined asm[R/2p. After some tedious
algebra, one gets for the static correlation function

^dvk•dv2k&2^dvk•dv2k&eq

5~R/2p!2
A~1012k̃x

615k̃x
41 k̃x

2!

2~ k̃x
214!~2k̃x

215!~2k̃x
211!~ k̃x

211!2

3@11O„e2,~R/2p!2
…#, ~35!

where ^dvk•dv2k&eq52A is the equilibrium contribution
and, to simplify the presentation, we have considered
caseky51.

To check the validity of this result, we have solved n
merically the Langevin equations~23!–~25!. The traditional
procedure consists of simulating the corresponding stoc
tic processes and using the hydrodynamical sample p
~time series! so obtained to construct the various correlati
functions. Unavoidable for nonlinear problems, this proc
dure is quite simple to set up but requires very long runs
order to get reliable statistics. Alternatively, one can so
directly the equations governing the evolution of the cor
lation functions which can be obtained easily from the u
derlying Langevin equations@26#. The latter procedure is
accurate~no need for statistics! and quite fast but it is, of
course, limited to linear problems. We have used both te
niques, the former to simulate the full nonlinear hydrod
namic equations~3! and~4! with noisy stress tensor, and th
latter to study the statistical properties of the~linear! Lange-
vin equations~23!–~25!, limiting ourselves to the first 41ky
modes@that is,drkx ,ky

(t)5dvkx ,ky
(t)'0 for ukyu>21#.

In Fig. 1 we have presented the static velocity autocor
lation function, as given by the relation~35!, together with
the corresponding numerical solution. As can be seen, qu
titative agreement is demonstrated forR<4 ~m<0.6! but dis-
crepancies gradually appear as we consider larger value
the Reynolds number. This is to be expected since the va
ity of the relation~35! can only be guaranteed for ‘‘small’
values of the Reynolds number.

Before discussing the behavior of the system for lar
values ofR(,Rc) it is instructive to study the properties o
the static correlation function in real space,^dv(r )•dv(0)&.
This can be obtained by summing the produ

^dvk•dv2k&exp@2pi(xk̃x1yky)# over (kx ,ky). Analytical cal-
culations, however, prove to be extremely difficult to hand
for the general case. We therefore limit ourselves to a spe
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case where only one of the wave numbers is summed o
the other being held fixed. Specifically, we simply setky
50 to obtain

^dvkx
•dv2kx

&22A5~R/2p!2
A/2

~ k̃ x
211!~112k̃ x

2!

3@11O„e2,~R/2p!2
…#. ~36!

Note that settingky50 is equivalent to taking the spatia
average over they direction @cf. Eq. ~30!#, so that relation
~36! holds only forkxÞ0. In fact,dv0,0(t)[0 since the linear
momentum of the center of mass is a conserved quan
With this restriction the summation can be performed in
straightforward manner to give

^dv~x!•dv~0!&22A@d~x!2ar #

5
AR2ar

8p F& cosh@&p~x2ar /2!#

sinh~par /& !

2
cosh@2p~x2ar /2!#

sinh~par !
2

1

par
G , ~37!

where the second term on the left hand side is the equ
rium contribution@27#. Note the presence of a constant te
in both equilibrium and nonequilibrium~right hand side!
parts which ensures the conservation of the linear mom
tum.

The nonequilibrium contribution tôdv(x)•dv(0)& ex-
hibits long-range correlations since the correlation length
clearly of the order of the system’s size. This is shown
Fig. 2 forR53 where quantitative agreement with numeric
results is observed. The existence of long-range correlat
is generic for fluids under shear constraints and has b
predicted by several authors@3,27#, and confirmed by both
microscopic@11# and lattice-gas automata simulations@28#.
On the other hand, experimental evidence has so far b
reported only for fluids under a temperature gradient, wh
quantitative agreement with fluctuating hydrodynamics w
demonstrated@8#.

FIG. 1. Fourier transform of the nonequilibrium part of the sta
velocity autocorrelation function, normalized by the correspond
equilibrium part, as a function of the Reynolds number. The so
curve represents the theoretical prediction, as given by Eq.~35!,
whereas the diamonds correspond to results obtained by nume
simulation of the linear Langevin equations~23!–~25!. The param-
eters aree51022, A51023 @defined by Eq.~28!#, ky51, kx51

~i.e., k̃x5
1
2 ). The estimated statistical errors are less than 4%.
er,

y.
a

-

n-

is

l
ns
en

en
re
s

Let us now consider far from equilibrium situations. A
pointed out in the preceding section, forR close toRc one
can reasonably well rely on the ‘‘three-mode’’ approxim
tion theory @that is, drkx ,ky

(t)5dvkx ,ky
(t)'0 for ukyu>2#.

As a consequence, Eqs.~23!–~25! reduce to a system of nin
coupled linear Langevin equations for each fixedkx which,
for consistency, must be limited toukxu<ar . The calcula-
tions can nevertheless be done, leading to the following
pression for the static velocity autocorrelation function:

^dvk•dv2k&22A5
AR2

2~Rc
22R2!~112k̃ x

2!
@11O~e2R2!#,

~38!

where the second term on the left hand side is the equ
rium contribution,Rc(kx) is given by Eq.~17!, and ky51.
The nonequilibrium part diverges asR→Rc(kx5ar), but
then, of course, the linearized Langevin equations cease
be valid. In Fig. 3 we have represented the result~38! for
increasing values ofR, together with the numerical solutio

g
d

cal

FIG. 2. Nonequilibrium part of the static velocity autocorrel
tion function, normalized by the parameterA @defined by Eq.~28!#,
as a function of the spatial coordinatex. The solid curve represent
the theoretical prediction, as given by Eq.~37!, whereas the dia-
monds correspond to results obtained by numerical simulation
the linear Langevin equations~23!–~25!. The Reynolds number is
set toR53 and the other parameters are as given in the captio
Fig. 1.

FIG. 3. Fourier transform of the nonequilibrium part of the sta
velocity autocorrelation function, normalized by the correspond
equilibrium part, as a function of the Reynolds number. The so
curve represents the prediction based on the ‘‘three-mode’’ appr
mation theory, Eq.~38!, whereas crosses and diamonds corresp
to numerical results obtained, respectively, by the simulation
linear and nonlinear Langevin equations. The parameters ar
given in the caption of Fig. 1. The estimated statistical errors
about 15% for the last four data points.
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of the linear Langevin equations~23!–~25! as well as the
results obtained by simulation of the full nonlinear hydrod
namic equations~3! and ~4! with noisy stress tensor. Quan
titative agreement is observed for values ofR up to 12, but
significant discrepancies start to show up asR→Rc ~'12.87!
where the linearized theory leads to diverging correlat
function@cf. Eq.~38!#. This is not the case for the correlatio
function based on the full nonlinear equations which see
to exhibit a maximum aroundRc . It should, however, be
noted that, due to slowing down of the relaxation of t
‘‘critical’’ Fourier modes, statistical errors are quite impo
tant for R close toRc ~about 15% for the last four data!, so
that no definitive conclusion can be drawn at this stage
any case, the analysis of the statistical properties of the n
linear regime is beyond the scope of the present work.

IV. VALIDITY OF THE INCOMPRESSIBILITY
ASSUMPTION

The macroscopic studies of subsonic hydrodynamical
stabilities are based on the incompressibility assump
which is fundamentally inconsistent with the very foundati
of the fluctuating hydrodynamics formalism@13#. For in-
stance, it is easy to show that at equilibrium (R50), one has

Uk~v!eq

Vk~v!eq

5
~v224p2ky

2!2116p4k̃x
2ky

2

~v224p2k̃x
2!2116p4k̃x

2ky
2

@11O~e2!#,

~39!

whereUk(v) and Vk(v) are the space-time Fourier tran
forms of ^du(r ,t)du(r 8,0)& and ^dv(r ,t)dv(r 8,0)&, respec-
tively. On the other hand, the incompressibility assumpti
Eq. ~7!, implies

Uk~v! inc/Vk~v! inc5ky
2/ k̃x

2, ~40!

where the subscript ‘‘inc’’ refers to incompressible fluid
Except near the originv'0 ~long time limit!, this result is
clearly in contradiction with the correct equilibrium form
Eq. ~39!. In particular, the equilibrium static autocorrelatio
are independent of the wave vector,

^dukdu2k&eq5^dvkdv2k&eq5A ~41!

whereas relation~40! leads to^dukdu2k& inc /^dvkdv2k& inc

5ky
2/ k̃x

2.
The situation is somewhat different for the nonequil

rium case. As we have shown in the preceding section
dominant order ine both the scattering function and th
sound regime of the velocity autocorrelation function assu
their equilibrium form, regardless of the value of the Re
nolds number. The nonequilibrium constraints thus aff
mainly the behavior of the fluid near the originv'0 ~the
viscous regime!. This result has an interesting consequen
It suggests that, as far as the nonequilibrium properties of
fluid are concerned, one may rely on the incompressibi
assumption Eq.~7!, since the compressibility of the fluid
affects mainly the sound modes which are well separa
from the purely viscous modes~recall thate is small!. Ana-
lytical calculations confirm the above arguments and lead
the following relation:
-

n

s

n
n-

-
n

,

to

e
-
t

.
e

y

d

to

Uk~v!2Uk~v!eq

Vk~v!2Vk~v!eq

5
ky

2

k̃x
2

@11O~e2R2!#, ~42!

where both the numerator and the denominator on the
hand side prove to assume a Lorentzian shape, sha
peaked around the origin~the width is of the order ofe!.
Nevertheless, because of the presence of the equilibr
contributions, the relation~42! is still in contradiction with
the incompressibility condition, Eq.~40!. There exist, how-
ever, two different situations where this objection can
ruled out.

The first is near the origin (v'0) where the fluid satisfies
the incompressibility condition already at equilibrium, i.e
Uk(v)eqk̃x

2'Vk(v)eqky
2. Obviously, this situation concern

only the long time behavior of the fluid. For instance, t
static correlation functions, obtained from Eq.~42!, obey

^dukdu2k&2A

^dvkdv2k&2A
5

ky
2

k̃x
2

@11O~e2R2!#, ~43!

which contradicts the incompressibility condition, Eq.~40!.
A more interesting situation concerns the behavior of

fluid near the instability where it can be shown that in t
limit R→Rc both the static and dynamic velocity correlatio
functions behave asO„(Rc

22R2)21
… @cf. Eq. ~38!#. In other

words, for R ‘‘close’’ enough toRc , equilibrium contribu-
tions become negligible so that the fluid behaves basicall
an incompressible way.

It should, however, be realized that this appealing conc
sion is based on the linearized Langevin equations~23!–~25!
which are not valid near the convective instability. The stu
of the statistical properties of the system in the critical
gime requires a nonlinear analysis of the fluctuating eq
tions which is beyond the scope of the present work and
be reported elsewhere. Instead, we resort here to nume
analysis only. More precisely, we have simulated the f
nonlinear fluctuating hydrodynamic equations to obtain
ratio of thex and y components of the static velocity auto
correlation function for several values of the Reynolds nu
ber. The results are depicted in Fig. 4 forkx5ky51, ar

FIG. 4. Ratio ofx andy component of the velocity autocorrela
tion function in Fourier space, as a function of the Reynolds nu
ber. The parameters aree51022, A51026 @defined by Eq.~28!#,

ky51, kx51 ~i.e., k̃x5
1
2 ). The dashed line represents the expec

ratio for an incompressible fluid, whereas the diamonds corresp
to results obtained by the simulation of the full nonlinear equatio
Eqs. ~3! and ~4! with noisy stress tensor. The estimated statisti
errors do not exceed 8%.
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52, so that the expected value of this ratio for an inco
pressible fluid is 4. This is precisely what we observe,
only for values ofR>12.8~recall thatRc'12.87), a domain
which is beyond the validity of linearized hydrodynam
equations~cf. preceding section!.

V. CONCLUDING REMARKS

Our main purpose in this article was the study of t
statistical properties of the linearized Kolmogorov flow. T
simplicity of this model allows a detailed analysis of th
fluctuation spectrum from near equilibrium up to the vicin
of the first instability leading to convective rolls. For th
latter case, the analytical calculations were based o
‘‘three-mode’’ approximation theory, which consists in r
taining only the Fourier modes with wave numberukyu<1,
while for the former case we have set up a perturbat
scheme around the equilibrium. Extensive numerical ca
lations allow us to emphasize clearly the limit of validity
both regimes. In particular, we have shown that the ‘‘thr
mode’’ approximation theory holds already forR>8 and
leads to a diverging velocity autocorrelation function asR
→Rc . On the other hand, the simulation of the full nonline
fluctuating hydrodynamic equations indicates that the va
ity of linearized hydrodynamic equations can be guarant
for Reynolds number as high as 12 (Rc'12.87).

Another interesting result concerns the validity of the
compressibility assumption which greatly simplifies t
mathematical analysis of the problem. The compressibility
a fluid affects mostly fast sound modes whereas the dyna
of the system near an instability is expected to be gover
mainly by dissipative slow modes. This intuitive argume
has been used by many authors who have considered flu
ating incompressible hydrodynamic equations, or even
rectly the corresponding normal form amplitude equations
which they added random noise terms@29#. In these ap-
proaches, the characteristics of the noise terms canno
related to equilibrium statistical properties of the fluid a
thus remain arbitrary. A more satisfactory approach wo
be to start with the compressible fluctuating hydrodynam
s

s

.

-
t

a

n
-

-

r
-
d

-

f
ic
d

t
tu-
i-
o

be

d
c

equations. Such a procedure, however, proves to be
tremely difficult mainly because of the boundary value pro
lem. To our knowledge, the only attempt in this direction h
been made by Schmitz and Cohen for the case of Be´nard
instability @14#. Concentrating on the behavior of a sma
layer in the bulk, these authors have succeeded in deriv
the linearized fluctuating equations close to the convec
instability.

Here again, the relative simplicity of the Kolmogoro
flow allows some further progress in this important issue.
this respect, we have shown that in the long time limit t
flow behaves as an incompressible fluid, regardless of
value of the Reynolds number. This, however, proves to
not the case for the short time behavior. In particular,
incompressibility assumption leads in general to a wro
form of the static correlation functions. The only exception
near the convective instability, where we have shown t
the incompressibility assumption remains valid.

The problem with this conclusion is that the lineariz
fluctuating hydrodynamic equations, on which this whole p
per is based, are no longer valid close to the instabi
threshold. Although extensive numerical simulations ha
basically confirmed our predictions, a full answer to this im
portant problem requires nevertheless a nonlinear analys
the fluctuating Kolmogorov flow. Work in this direction is i
progress.
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